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On the Stability of the Ritz-Galerkin Method 
for Hammerstein Equations 

by Jorg Hertling and Alexandru I. Schiop 

Abstract. For the numerical treatment of Hammerstein equations by variational meth- 

ods which has been considered by Hertling, we establish the stability in the sense of 

Mikhlin, Stetter and Tucker. 

Introduction. If one uses a variational method for the numerical treatment of 
Hammerstein equations, one obtains a nonlinear algebraic system of equations. In or- 
der to investigate the stability of the computing scheme, we will show that one can ap- 
ply a theorem by Tucker [7]. Tucker's work is based on a paper by Mikhlin [3]. We 
would also like to refer to a paper by Kasriel and Nashed [2] where the problem of 
stability has been considered in a very similar way for some classes of nonlinear opera- 
tor equations. 

An equivalent general concept of stability and its application to initial-value prob- 
lems has been given by Stetter [6]. 

Let B be a bounded measurable set in a finite-dimensional Euclidean space and 
let the symmetric kemel K(x, y) define an operator A which is selfadjoint in i2 and 
completely continuous from Lq into LP (p > 2, p- 1 + q-1 = 1): 

(1.1) Au- B K(x, y)u(y)dy. 

Furthermore, we introduce the Nemytsky operator 

(1.2) h-g(u(y), y) 

as a continuous operator from LP into Lq; we assume that g(u, y) is an N-function and 
that h is potential. A function g(u, y) is an N-function if it is continuous with respect 
to u for almost every y E B and measurable in B with respect to y for every fixed u E 

(-oo, ?oo). An operator h from a Banach space E into the conjugate space E* is called 

potential on some set H C E, if there exists a functional f such that grad f(x) = h(x) 
for every x E H. Let G(u, y) be defined by 

(1.3) aG(u, y)/au g(u, y) 

and assume 
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(1.4) G(O, y)--O. 

For the Hammerstein equation 

(1.5) u = Ahu, 

one of the authors [1] has considered the numerical solution by means of a Ritz-Galer- 
kin scheme and by using subspaces of spline functions and finite elements. We shall es- 
tablish here the stability of this approximating scheme. 

The Computing Scheme and its Stability. According to Vainberg [8], there holds 
the following 

THEOREM 1. Let A be positive and 

(2.1) 2G(u, y) < au2 + b(y)lula + c(y), 

where 0 < a < X1 (X, is the smallest characteristic number of A), 0 < a < 2, 0 < 

b(y) E LU, y = 2/(2 -a), 0 < c(y) E L. Then, Eq. (1.5) has at least one solution in 
LP. If, in addition, h satisfies a Lipschitz condition 

(2.2) IIhu2 - hullILq < C Iu2 - u1IILP, 

then the solution is unique. 
Henceforth, we shall assume (2.2). The proof of this theorem consists in mini- 

mizing the functional 

(2.3) p(U) - (u, U) - 2f(A1/2U) 

in L2, where A"/2 is completely continuous from L2 into LP and 

(2.4) f(u) = B G(u(y), y) dy - 

Since grad f(u) = hu, the minimization of (2.3) yields a solution uo E L2 of 

(2.5) u = Al /2hAl/2U; 

setting zo = A' /2u0o we have a solution of (1.5). The Lipschitz condition implies 
that uo strictly minimizes the functional (2.3) in L2; 

For some u1, u2 E L2, it follows from (2.2): 

1 grad (p(u2 -grad ep(u 1 )II 

(2.6) > 2IIu2 -R 
11-21A"2hA22uI-AAh2hA"2u2 

11 

> 211u2-u1 11-2X1/ 11 hA" 2u2-hA1 i2u1lq 

>2(1 -C/X1)11U2 -U1 11. 

For the numerical approximation, we consider the minimization of qo(w) on a finite- 
dimensional subspace Lm of L2 with dim (L2) = m. Let Lm be spanned by the 
functions {wi(Y)}7L= If we represent a function in Lm by Em 1 uiwi(j) and if we 
define ep(ZT u1w1(y)) G(ul, , um) G(u), then it has been shown in [1] 
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that there exists a positive constant C1 such that 

G(u) > ep(uo) + lui12, 
x c i 

which entails 

(2.7) lirn G(u) = oo. 
u IIu I--> 

Since G(u) is continuous on Rm, bounded below by up(uo) and satisfies (2.7), it follows 
that there exists at least one vector u E Rm such that G(u) > G(Au) for all u E Rm. 

In order to show that uj is unique, one considers 

(2.8) grad G(u) = 2( uiw) - 2A1/ 2h( UIA1"2W) = O 

Applying A"/2 to this equation and denoting Wj - A"2 w1 yields 

m _ Im \ 

, ujW, = Aht,luw) 

From (2.2), we obtain that Ah is a contracting mapping with a unique fixed point u. 
This means that there exists a unique function wm in the subspace Lm which mini- 
mizes the functional (2.3) over Lm. 

By applying A to (2.8), we obtain the system 

m 
(2.9) Ah ( w i = 1,2, ,m, 

j=1 ~ ~ ~ ~ = 

which might be solved by some iterative method. The approximate solution of the in- 
tegral equation is given by 

m 
(2.10) Wm 

A 
a U1Wj. 

j=1 
We will denote the system (2.9) by 

(2.11) TmUm = 0 

DEFINITION 1 [7]. An operator Am is said to lie in an Q2m = (Um, rm, bm) 
neighborhood of an operator Tm if Am = Tm + bmUm, where Um are nonexpansive 
mappings (II Um(x) - Um(y)llm < lIx-y Ilm for all x,y ERm, 11^ llm denotes the Euclidean 

norm) in Km (um, rm) = {u I 11 u - um lm < rm} and IlumUmlm < 11 Um II m indepen- 

dently of m. 
Let the corresponding perturbated Ritz-Galerkin system be 

(2.12) AmVm = 6M. 

Definition 2 [7] . The computing scheme (2.11) is stable at {um } if for each rm 
there exist neighborhoods Vm(0, r7m), numbers Pm and constants s and t such that, if 
Am is in an Om (Um, rm, bm) neighborhood of Tm with bm <pm and 6m E Vm 
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then Eqs. (2.12) are solvable and 

(2.13) llm - umnIIm ?Sbb + tII6mIIm, 

where s and t are independent of n (but may depend on the sequence {um}). 
Now we have the following result: 
THEOREM 2. For the construction of the solution, use a subspace L2m which has 

the properties 

(2.14) lrm inf Irw -UOIIL2 = 0, 
m ?? w Lm2 

and strong minimality in the sense of [4]. Then, the computing scheme (2.11) is stable 
at {um}. 

Proof. Using relation (2.6) and strong minimality, it follows that there exists a 
constant C2 > 0 which is independent of m, such that we have for u, v E Rm 

(2.15) IITMrU - TmIV "IM > C2 IIU - V Im - 

On the other hand, the IIum unm are bounded above, independently of m (uniformly 
bounded above). 

Indeed, with our assumptions, we have the following chain of inequalities (see 
[1]): 

(X1 -C)IIA1( Wm - UO)IIL2 < (1 - C1)jIIW - uIIL2 

p( AM) SL(UO)= inf2 p(w) - u 

WELm 

? inf (Ilw - u II22 + CIIA /2(W -U0)II22) 
(2.16) weL2nm 

(i ) f E w-u L2 I L (L ? )IIWm UOIIL2 

w lti IIAo 2. m -5UO L t u 2 

where uo is the solution of (2.5), Wm the unique function which minimizes the func- 
tional (2.3) over L2 and wm the interpolation of u0 in L2. If Ilum lr are not uni- 

formly bounded, then we have from (2.7), lirnm o p6() = +oo, which contradicts 
the combination of (2.16) and (2.14). Tucker has proved [7] that the uniform 
boundedness of { 11 Um l"m }, together with (2.15), ensures that the computing scheme 
(2.1 1) is stable. Q.E.D. 

Let us remark that we did not use the existence of the second derivative of the 
functional (2.3) as has been done by Mikhlin [3] and $chiop [5]. On the other hand, 
we have to assume-(2.14). 

Several classes of interpolating functions do, in fact, satisfy this property. In the 
one-dimensional case, we refer in particular to L-splines and their generalizations, in 
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the multidimensional case, we refer to finite elements. Most of these constructions 
have been considered by Varga [9]. 

Let us finally say that, with the machinery of [1], an analogous proof for the 
stability of the computing scheme for Hammerstein equations with quasi-definite ker- 
nels can be given. 
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